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Tandem mass spectrometry-based proteomics is cur-
rently in great demand of computational methods that fa-
cilitate the elimination of likely false positives in peptide and
protein identification. In the last few years, a number of new
peptide identification programs have been described, but
scores or other significance measures reported by these
programs cannot always be directly translated into an easy
to interpret error rate measurement such as the false dis-
covery rate. In this work we used generalized lambda dis-
tributions to model frequency distributions of database
search scores computed by MASCOT, X!TANDEM with
k-score plug-in, OMSSA, and InsPecT. From these distri-
butions, we could successfully estimate p values and
false discovery rates with high accuracy. From the set of
peptide assignments reported by any of these engines, we
also defined a generic protein scoring scheme that en-
abled accurate estimation of protein-level p values by
simulation of random score distributions that was also
found to yield good estimates of protein-level false dis-
covery rate. The performance of these methods was eval-
uated by searching four freely available data sets ranging
from 40,000 to 285,000 MS/MS spectra. Molecular &
Cellular Proteomics 7:1748–1754, 2008.

Present day mass spectrometry-based proteomics re-
search involves the generation of very large data sets con-
taining thousands of tandem mass spectra, which are as-
signed to putative peptide sequences in databases by means
of computer programs called database search engines. Given
the number of MS/MS spectra involved, manual validation of
spectrum to peptide assignments quickly became unfeasible,
and user-unattended procedures for discarding incorrect
matches were developed. In the earliest days of multidimen-
sional chromatography coupled to tandem mass spectrome-
try, plain score cutoffs for each charge state were arbitrarily
established by highly experienced mass spectrometrists (1, 2)

or determined by searching MS/MS spectra against reversed
protein sequence databases (3). For instance, it was quite
common to filter SEQUEST data by accepting all matches
with �Cn � 0.1 and Xcorr � 1.5, � 2, and � 3 for singly,
doubly, and triply charged peptides, respectively. However,
the relative frequency associated to a given score threshold
was proven to be highly dependent on overall data set quality,
database size, and database search parameters (4, 5). This
finding implied that significance thresholds needed to be es-
tablished in an experiment-specific manner and that score
thresholds established for trial data sets should never be
extrapolated to other data sets expecting that the error rate
would be an experiment-independent variable uniquely asso-
ciated to score values. Such concerns led to the development
of mathematical models for describing the probability distri-
butions of database search scores of commonly used search
engines such as SEQUEST. Other researchers aimed at de-
veloping probability-based search engines attempting to di-
rectly provide a significance measure for each peptide assign-
ment, such as X!TANDEM (6) or OMSSA1 (7). Finally others
decided to estimate error rates by comparing the frequencies
of scores of peptide assignments with those obtained by
assignments to false protein sequences obtained either by
reversing or randomizing real protein sequences (8). Among
these strategies, the recently described composite target/
decoy sequence database search strategy is gaining increas-
ing acceptance (9).

It is important to point out that warnings have been raised
to encourage journals to increase the documentation of pro-
teomics experiments, placing special emphasis on peptide
and protein identification procedures, but current algorithmic
diversity makes standardization a challenging task (for a de-
tailed description of the current situation see a recent review
by Nesvizhskii et al. (10)). Because of the number of database
search engines available and the disparity of spectrum match-
ing and scoring schemes that these programs implement, a

From the Proteomics Facility, Centro Nacional de Biotecnologı́a,
Consejo Superior de Investigaciones Cientı́ficas (CSIC), 28049 Mad-
rid, Spain

Received, March 18, 2008
Published, MCP Papers in Press, May 31, 2008, DOI 10.1074/

mcp.M800122-MCP200

1 The abbreviations used are: OMSSA, Open Mass Spectrometry
Search Algorithm; GLD, generalized lambda distribution; FDR, false
discovery rate; DHR, decoy hit rate; iTRAQ, isobaric tags for relative
and absolute quantification; InsPecT, interpretation of spectra with
post-translational modifications.

Research

© 2008 by The American Society for Biochemistry and Molecular Biology, Inc.1748 Molecular & Cellular Proteomics 7.9
This paper is available on line at http://www.mcponline.org



generalized search engine-independent method to model
score distributions and establish adequate statistical signifi-
cance thresholds would be highly desirable. Furthermore sta-
tistical significance should be expressed in an easily interpret-
able form while allowing a good trade-off between stringency
and power, such as the false discovery rate (FDR) (11, 12),
which measures the expected proportion of truly null features
that will pass a given p value threshold (i.e. the expected
fraction of false positives).

In this work we used generalized lambda distributions
(GLDs) to model MS/MS assignment score distributions. The
GLD is an extremely flexible four-parameter function that can
mimic with high accuracy the most important families of con-
tinuous probability distribution functions used in mathemati-
cal modeling. This distribution has been successfully used to
model biological, physical, and economical processes be-
cause it can provide a valid mathematical model from ob-
served data histograms of virtually any shape (13). By search-
ing several collections of tandem mass spectra with a set of
popular database search engines, either commercially or
freely available, we demonstrate that this modeling strategy
can be used in a search engine-independent manner to com-
pute p values and peptide identification error rates. Finally we
also provide a simple but powerful method for computing
protein-level p values that are not biased for protein length or
number of peptide hits. Estimates of associated protein-level
identification error rates are also provided.

EXPERIMENTAL PROCEDURES

MS/MS Data Sets—All the data sets used in this work are freely
available and contain MS/MS spectra recorded using ion trap mass
spectrometers. The data set “RaftFlow,” containing approximately
40,000 dta files, was downloaded from the Sashimi documentation
site (hosted by SourceForge). This data set corresponds to the anal-
ysis of the ICAT flow-through of lipid rafts purified from Jurkat T cells.
The data set “PAe000038-39” was obtained by merging data sets
PA000038 and PA300039 downloaded from the PeptideAtlas Web
site that were obtained from proteome digests of human cancer cell
lines SiHa and SqCC. MS/MS scans in mzXML files were converted to
mgf file format as singly, doubly, and triply charged ions, yielding
53,666 spectra. The data set “PAe000114,” obtained from a digest of
the human erythroleukemia K562 cell line, was also downloaded from
PeptideAtlas. MS/MS scans in mzXML files were converted to mgf file
format as singly, doubly, and triply charged ions, yielding 284,045
spectra. The data set “iPRG2008,” containing 42,235 MS/MS spec-
tra, was obtained from the Association of Biomolecular Resource
Facilities (ABRF) Proteome Informatics Research Group. These spec-
tra were obtained from iTRAQ-labeled proteome digests of mouse
liver cells.

MS/MS Database Searches—MS/MS database searches were car-
ried out using MASCOT version 2.0.05 (available from Matrix Science
under license), OMSSA 1.1.3.win32 (freely available from the National
Center for Biotechnology Information (NCBI)), InsPecT “20070905”
(freely available from the University of California Santa Cruz compu-
tational mass spectrometry group), and X!TANDEM 2 “2007.07.01.2”
with k-score plug-in (freely available from LabKey). Peak lists in mgf
format were used as input. Database search engine parameters were
as similar as possible for all search engines. Briefly precursor mass
tolerance was set to 2 Da, fragment ion mass tolerance was set to

0.8 Da, and cleavage specificity was set to “trypsin,” allowing for a
maximum of two missed cleavages. Instrument-specific scoring was
used when available. Cysteine alkylation due to iodoacetamide
(�57.022) treatment was set as fixed modification for all data sets
except for the iPRG2008 data set for which cysteines were treated
with methylmethanethiosulfonate (�45.98). For this data set we also
set as fixed modifications iTRAQ reagent (�144.102) at lysine side
chain and peptide N terminus (except for InsPecT, which does not
allow fixed modifications at the peptide N terminus). Databases used
were target/decoy sequence databases built from International Pro-
tein Index (IPI) human v3.23 or the mouse UniProt database distrib-
uted along with the iPRG2008 data set. The use of random or re-
versed sequences as decoy proteins was decided arbitrarily.

Obtaining Database Search Engine Scores for Modeling—Matches
to peptide sequences shorter than 10 residues were always dis-
carded. For MASCOT, the main score was used; for X!TANDEM with
k-score plug-in, the k-score (14) (an implementation of the COMET
score (15)) was used; for InsPecT, we took the MQScore, which is a
linear combination of several match quality scores computed by the
program (16). Scores were used without modification but for OMSSA.
In this case, to modify the scoring scale so that correctly identified
peptides attain high scores, we took as score the negative logarithm
of the reported “E value.” GLD models were built for every charge
state independently, and only assignments to reversed/random pep-
tide sequences were used for this purpose. The number of data points
was arbitrarily limited to the top 1500 scores of each charge state.
This data set truncation was carried out to enforce the GLD model to
minimize squared error in the right tail of the distribution for large data
sets in the high score region where experimentally relevant statistical
significance thresholds are usually computed. Fitting GLDs to trun-
cated observed distributions is not a problem and does not affect
model accuracy.

GLD Fitting—The generalized � distribution is best defined from its
percentile function,

Q�y� � Q�y,�1;�2;�3;�4� � �1 �
y�3 � �1 � y��4

�2
(Eq. 1)

where 0 � y � 1. The parameters �1 and �2 are, respectively, the
location and scale parameters, and �3 and �4 determine the skewness
and kurtosis of the distribution. In the same way that the normal
probability distribution has the restriction that the standard deviation
must be non-0 and non-negative, not any given set of (�1, �2, �3, �4)
parameters can yield a valid distribution. An accurate description of
the restrictions on these parameters that yield a valid GLD may be
found elsewhere (13). From the percentile function described above,
the probability density at x � Q(y) is computed as follows.

f�x� �
�2

�3y�3 � �4�1 � y��4�1 (Eq. 2)

Because y is defined as the probability of x � Q(y), building data
histograms for fitting a GLD involves turning data points into relative
frequency scale, computing Q(y) for all points, and binning data points
according to this amount. For fitting GLDs to histograms from ob-
served data we used the method of percentiles described by Karian
and Dudewicz (13) with minor modifications. Briefly this method in-
volves the computation of four sample statistics that are used as
estimators of distribution parameters,

�̂1 � �0.5 (Eq. 3)

�̂2 � �̂1�u � �̂u (Eq. 4)

�̂3 �
�̂0.5 � �̂u

�̂1�u � �̂0.5
(Eq. 5)
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�̂4 �
�̂0.75 � �̂0.25

�̂2
(Eq. 6)

where �̂f denotes the sample percentile limiting the fraction f of
ranked observations, and u is an arbitrary number between 0 and
0.25, which we set to 0.005. �̂1 is the sample median, �̂2 is the
interdecile range, �̂3 is the left-right tail weight ratio, and �̂4 is the tail
weight factor. Valid pairs of (�3, �4) parameters corresponding to the
estimated amounts (�̂3, �̂4), or (1/�̂3, �̂4) if �̂3 � 1, are then obtained
from previously tabulated values of (�3, �4). From these amounts, the
estimated values for �2 and �1 are obtained consecutively as follows.

�2 �
�1 � u��3 � u�4 � �1 � u��4 � u�3

�̂2
(Eq. 7)

�1 � �̂1 �
�1⁄2��3 � �1⁄2��4

�2
(Eq. 8)

Among all sets of (�1, �2, �3, �4) parameters compatible with the set
of estimators (�̂1, �̂2, �̂3, �̂4) obtained from each data histogram, the
GLD(�1, �2, �3, �4) that better fits the observed data is selected so that
it minimizes a given error indicator. An absolute error threshold of 0.35
in the sample estimators (�̂3, �̂4) was used, and to bias the model
toward better accuracy of the right tail, we selected as best model the
one that minimized the amount

�
i

wi

�yi � fi�2

fi
(Eq. 9)

for every non-0 value of fi where yi and fi denote, respectively, the
value at the ith bin of the observed and model score histograms. The
weight wi was defined as the amount of 1 minus the relative rank
raised to the power of 4. Optimal bin size for building histograms was
computed from data set size, N, and interquartile range (a measure of
data dispersion) as follows.

w � 2��̂0.75 � �̂0.25�N�2⁄3 (Eq. 10)

Because a closed expression for the probability function of the form
y � F(x) does not exist, this distribution must be computed numeri-
cally to assign a p value to each data point.

Estimation of Error Rates in Peptide Identification—Given a set of p
values assigned either at the peptide or protein level and ranked in
ascending order, the expected proportion of data observations that
pass a given p value threshold pi depends on data set size and on the
number of i data points with equal or better p value. This expected
error rate is called FDR.

FDRi �
Npi

i
(Eq. 11)

Error rates may also be estimated from composite target/decoy se-
quence database searches by counting the number of decoy hits
passing a given p value threshold. Because the FDR is a mathemat-
ical expectation, we decided to use a different name for the error rate
estimated by counting decoy hits and called it decoy hit rate (DHR).
This amount may be defined as

DHRi �
2Di

i
(Eq. 12)

where Di is the number of decoy hits with p value better than pi.
Because this method is independent of the exact values of the esti-
mated probabilities, it was used to assess the accuracy of the FDR
computed from the models. Composite target/decoy databases were

built by concatenating a regular protein database with a fake version
of it containing either random or reversed protein sequences. Ran-
dom protein databases were built using the same distribution of
protein lengths and residue frequencies observed in the original
database.

Computation of Protein-level p Values and Error Rates—Peptide
matches were grouped by parent protein sequence. From the p
values of h peptide ions assigned to a given protein, the protein score
was defined as

SP � �
i�1

h

�log�pi� (Eq. 13)

where pi are the peptide ion p values computed from the correspond-
ing GLD models. Because the null hypothesis states that the hj

peptides were assigned to the jth protein by chance, the probability of
finding a score equal or better than SPj may be estimated by gener-
ating a sufficiently large set of random protein scores and calculating
the relative frequency of random scores achieving values as high as or
higher than SP. These random protein scores were computed by
sampling hj decoy peptide p values from the whole data set at random
and applying Equation 13 to obtain a score. In this work we computed
106 random protein scores for each category of h in the data set, so
protein p values as low as 10�6 could be assigned. Recall that lower
p values may be assigned by increasing the number of random scores
computed. After assigning p values, proteins were clustered into
sequence similarity groups by defining a protein similarity cluster as
the set of all proteins in the data set that shared at least one identified
peptide. The FDR and DHR were calculated as described previously
for each similarity cluster, taking as cluster p value the smallest
protein p value in the cluster.

RESULTS

After database searches, MS/MS assignments to false pep-
tide sequences were classified by charge state, redundancy
was eliminated by taking the best scoring spectrum of a given
charge state among those assigned to the same peptide
sequence, and the resulting non-redundant set of scores was
used to build a histogram of observed score frequencies.
From every charge state-specific score histogram a model
probability function was obtained by fitting a GLD as de-
scribed under “Experimental Procedures.” These models
were then used to compute the expected relative frequency of
scores that will reach a magnitude as extreme as or more
extreme than a given value, i.e. to assign p values. Fig. 1
shows GLD models obtained from database search scores
provided by X!TANDEM with k-score plug-in, OMSSA,
MASCOT, and InsPecT (from the data set RaftFlow). At first
sight, probability density functions seem to provide a good
description of score frequencies in all cases given the overlap
between observed and model data series. To check the va-
lidity of the p values computed from the models, we pooled
assignments from all charge states, ranked them by p value,
and plotted the computed p value against its relative rank. As
shown, both estimators converge to very similar values across
several orders of magnitude, suggesting that the GLD fits may
be used to estimate expected relative frequencies of raw
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scores with high accuracy. Furthermore we used the number
of decoy hits passing a given p value threshold to estimate its
associated frequency of random matches (DHR) and com-
pared these amounts to FDR estimates obtained directly from
the p values. The results obtained from searching the four
data sets with the four search engines as well as parameters
of the charge state-specific GLD models are shown in Tables
I–IV. For a predicted fraction of incorrect matches of 5%, we
observed frequencies of incorrect matches ranging from 3.7
to 5.5% in 15 of 16 cases and of 1.8% in one case. These
results account for a total of 25,986 peptide ion matches.
Afterward peptide matches were grouped by parent protein
sequence, and a protein score was computed for every pro-
tein from the p values of putatively identified peptide ions.
Given h peptide ions assigned to any one protein, by repeat-
edly sampling h decoy peptide p values at random and com-

puting a random protein score, we built protein score distri-
butions that reflected the relative frequencies of the range of
scores that may be obtained by combining h peptide ion p
values under the null hypothesis. Such random protein score
distributions are shown in Fig. 2A. As observed, score fre-
quencies estimated from simulated distributions were very
close to the observed frequencies of decoy protein matches
in the data set, especially in the right tails. To check the validity
of p values computed from these distributions, we pooled pro-
tein matches across all categories of h higher than 1, ranked
them by ascending protein p value, and plotted the estimated
protein p value against its relative rank. As observed in Fig. 2A,
computed p values were very close to observed relative fre-
quencies across several orders of magnitude. Because the ab-
solute number of MS/MS hits at random to a given protein, h,
depends on sequence length (larger proteins yield more theo-

FIG. 1. GLD models of MS/MS as-
signments to decoy peptide se-
quences (pure random matches). A, C,
E, and G show truncated score distribu-
tions for singly (black circles), doubly
(open circles), and triply (gray circles)
charged peptides with its best fit GLD
model superimposed (solid lines) for
X!TANDEM with k-score plug-in,
OMSSA, MASCOT, and InsPecT, re-
spectively. B, D, F, and H depict the
comparison of p values computed from
GLDs against the observed relative fre-
quency of such p values (the solid line
indicates the ideal relationship y � x) in
logarithmic and decimal (insets) scales
for the same set of search engines in the
same order. Norm. Freq., normalized
frequency.
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retical peptides upon in silico digestion) and a random score
distribution was generated for every value of h, we expected
that p values assigned by this method would not show any bias

toward parent protein length. This desirable behavior of protein
p values was found to be true and is illustrated in Fig. 2B. Tables
I–IV also show the results of protein-level postprocessing of all

TABLE I
Modeling results for the lipid raft ICAT flow-through data set, including parameters of the best fit GLD distributions for every charge state

“No. pept. ions,” number of peptide ions passing the arbitrarily specified FDR threshold (different charge states of the same peptide were
counted separately) after combining peptides of all charge states. “Prot. FDR” and “Prot. DHR,” FDR threshold specified at the protein level
and its corresponding DHR. “No. prot. clust.,” number of protein clusters passing the specified FDR threshold at the protein level.

Data set RaftFlow

Engine/score Charge �1 �2 �3 �4 FDR DHR No. pept.
ions

Prot.
FDR

Prot.
DHR

No. prot.
clust.

MASCOT score �1 11.48 0.0031 0.00579 0.0132 0.05 0.046 1406 0.05 0.033 401
�2 19.49 0.0027 0.00039 0.0113
�3 25.56 0.0029 0.00039 0.0113

InsPecT MQScore �1 �1.59 0.1749 0.00431 0.15202 0.05 0.04 1832 0.05 0.033 416
�2 �0.41 0.1597 0.00181 0.07966
�3 0.28 0.0269 0.00039 0.0113

OMSSA �log(E value) �1 �13.67 0.0722 0.00154 0.14887 0.05 0.042 1739 0.05 0.04 457
�2 �9.95 0.0071 0.00039 0.0113
�3 �9.8 0.0077 0.00039 0.0113

X!TANDEM k-score �1 262.18 0.0044 0.15228 0.26478 0.05 0.044 1741 0.05 0.044 458
�2 335.17 0.0014 0.00019 0.07795
�3 438.82 0.0003 0.00039 0.0113

TABLE II
Modeling results for the combination of cancer cell line experiments PAe000038 and PAe000039

See legend in Table I.

Data set PAe000038-39

Engine/score Charge �1 �2 �3 �4 FDR DHR No. pept.
ions

Prot.
FDR

Prot.
DHR

No. prot.
clust.

MASCOT score �1 11.82 0.003 0.00039 0.0113 0.05 0.043 365 0.05 0.012 129
�2 15.35 �0.0492 �0.0145 �0.127
�3 18.73 0.0031 0.00039 0.0113

InsPecT MQScore �1 0.607 0.6325 18.14 0.1711 0.05 0.018 354 0.05 0.025 121
�2 0.033 0.0228 0.00039 0.0113
�3 0.324 0.1645 0.00181 0.07967

OMSSA �log (E value) �1 �13.67 0.1273 0.06768 0.3613 0.05 0.055 330 0.05 0.044 124
�2 �9.73 �0.2191 �0.025 �0.1943
�3 �5.28 0.0081 0.00039 0.0113

X!TANDEM k-score �1 293.1 0.0095 12.1431 0.2879 0.05 0.049 236 0.05 0.059 101
�2 260.9 0.0003 0.00013 0.0111
�3 440.9 �0.0059 �0.0106 �0.1247

TABLE III
Modeling results for the large data set PAe000114

See legend in Table I.

Data set PAe000114

Engine/score Charge �1 �2 �3 �4 FDR DHR No. pept.
ions

Prot.
FDR

Prot.
DHR

No. prot.
clust.

MASCOT score �1 16.01 0.0031 0.00039 0.0113 0.05 0.04 3955 0.05 0.043 1196
�2 20.13 0.0034 0.00039 0.0113
�3 20.38 0.0033 0.00039 0.0113

InsPecT MQScore �1 0.139 0.1676 0.00181 0.07966 0.05 0.037 4881 0.05 0.042 1138
�2 0.759 0.0233 0.00039 0.0113
�3 1.051 0.1956 0.00353 0.08134

OMSSA �log (E value) �1 �10.42 0.0096 0.00039 0.0113 0.05 0.043 4433 0.05 0.043 1281
�2 �8.75 �0.1091 �0.0106 �0.1247
�3 �8.26 0.0099 0.00039 0.0113

X!TANDEM k-score �1 248.9 0.0029 0.00019 0.07795 0.05 0.04 2579 0.05 0.043 908
�2 310.3 �0.0049 �0.0145 �0.127
�3 457.7 �0.0062 �0.0106 �0.1247
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GLD modeling experiments described above. As observed, for
a predicted 5% of incorrect protein matches, observed frequen-
cies ranged from 3.3 to 6.7% in 14 of 16 cases and exceeded
this range in only two cases with values of 1.2 and 9.9%. These
results account for a total of 7569 protein clusters.

DISCUSSION

In previous research, other investigators developed statis-
tical models to assign p values to peptide match scores
provided by database search engines. These statistical mod-
els incorporate experiment-specific information that is re-
flected in the frequency distributions of such scores. In this
work, we developed a generalized approach that relies on the
use of generalized � distributions, avoiding the need to search
for a known probability density function that may approximate
the frequency distribution of scores from a given search en-
gine. To obtain models that minimize the squared error in the
right tail, where meaningful significance thresholds are usually
established, we truncated the score distributions by taking the
1500 highest scores of each charge state and introduced a
weight factor in every normalized squared error that empha-
sized the contribution of the right tail to the total error. Be-
cause GLD models are extremely flexible, the complete ab-
sence of search engine scores coming from correctly
assigned spectra is critical to prevent the model from also
fitting the tail of positive match scores. This is the reason why
we used only matches to false peptide sequences to estimate
parameters for the models. Given the increasing popularity of
the target/decoy composite database method, we preferred
this strategy instead of separate real and false protein se-
quence database searches. In addition, this method allowed
us to simultaneously obtain a widely accepted estimation of
the misidentification rate to compare with that predicted from
the statistical model. As described in under “Results,” the
accuracy of these models proved very good and yielded
expected error rates very close to their real values in almost all
cases. The fact that MS/MS search scores from any search
engines may be expressed as p values using this method
might facilitate a detailed comparative analysis of algorithm
performance in the future. Moreover a common probability
scale for all search engines seems much more suitable for the
development of algorithms to obtain extra significance by
matching MS/MS spectra to peptides using multiple database
search programs.

Because identifying individual peptides is not the goal of
most present day proteomics experiments, peptides must be

TABLE IV
Modeling results for the iTRAQ-labeled mouse sample distributed by the Proteome Informatics Research Group

See legend in Table I.

Data set iPRG2008

Engine/score Charge �1 �2 �3 �4 FDR DHR No. pept.
ions

Prot.
FDR

Prot.
DHR

No. prot.
clust.

MASCOT score �2 20.57 0.0031 0.00067 0.01153 0.05 0.04 599 0.05 0.045 225
�3 21.61 0.0035 0.00067 0.01153

InsPecT MQScore �2 �1.41 0.1219 0.00019 0.07795 0.05 0.052 297 0.05 0.099 134
�3 �0.54 0.2779 0.00431 0.15202

OMSSA �log(E value) �2 �13.2 0.0076 0.00739 0.01296 0.05 0.039 503 0.05 0.067 216
�3 �12.94 0.0459 0.00181 0.07966

X!TANDEM k-score �2 235.25 0.0038 0.06351 0.18166 0.05 0.049 736 0.05 0.068 264
�3 419.58 0.0004 0.00097 0.01176

FIG. 2. A shows observed decoy protein score distributions for
several values of h. (h � 2, open circles; h � 3, gray circles; h � 4,
black circles; h � 5, open squares). Thin solid lines superimposed on
observed distributions indicate distributions simulated by computing
106 random protein scores. The upper right subpanel shows the
comparison of p values assigned from simulated distributions against
the observed relative frequency of such p values (the solid line indi-
cates the ideal relationship y � x) in logarithmic and decimal (inset)
scales. B shows the number of peptide ion hits (gray circles) and
protein p value (open circles) versus protein sequence length. Only
data points belonging to decoy proteins (pure random matches) are
shown. Norm. Freq., normalized frequency.
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grouped according to parent protein sequence. For these
groups of peptide matches, a new scoring scheme must be
devised that represents each parent protein as a single ex-
periment feature, and statistical significance thresholds must
be established according to this new experimental level. To
this end, we defined a protein score that reflected the quality
of individual peptide ion matches by summing the negative
logarithms of their p values. As described under “Experimen-
tal Procedures,” this definition of protein score permits mod-
eling the frequencies of random scores by chance in a
straightforward manner and thus assigning protein-level p
values without the need to develop an analytical formulation
to estimate such probability. Estimation of protein p values
and error rates using this method yielded values that were, in
almost all cases, in very good agreement with the amounts
estimated by counting decoy protein matches, suggesting
that the method may be considered robust despite its sim-
plicity. In addition, these protein p values are independent of
the absolute number of MS/MS spectra matching peptides of
a given protein, which is expected to be largely dependent on
protein sequence length.

Recall that the ability to rank protein matches by decreasing
significance is not intrinsic to the original target/decoy data-
base strategy, which was initially defined at the peptide level.
This added protein-level layer overcomes the fact that a misi-
dentification rate at the peptide level may not necessarily be
associated to a low misidentification rate at the protein level,
which is a well known paradox of bottom-up proteomics. The
other drawback of these proteomics technologies, known as
the protein inference problem (17), was partially overcome by
grouping proteins sharing identified identical peptide se-
quences into protein clusters. Because of sequence similarity
among proteins, peptides released upon enzymatic digestion
of a given protein may end up contributing to the putative
identification of many other proteins not necessarily present in
the sample. Although there is no perfect solution, a maximum
parsimony assumption may be done to reduce the list of
identified proteins to the minimum set of protein sequences
capable of explaining the presence of all observed peptide
matches. By taking the most significant protein match in each
cluster as a representative match, protein clusters may be
filtered under controlled error rate conditions as demon-
strated in the tables. Attempting to do more sophisticated
protein inference, for instance using non-degenerate pep-
tides, is out of the scope of this work.

In conclusion, we think that the flexible statistical proce-
dures presented might be applied to analyze MS/MS assign-
ment scores from a variety of search engines as well as to
obtain a non-redundant list of putatively identified proteins
without significantly exceeding a maximum tolerated percent-
age of incorrectly identified proteins. The suitability of these
procedures may be judged from the results obtained for the
approximately 400,000 MS/MS spectra that were used in this
work.
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